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Abstract

In this paper we consider the dynamic irreversible evolution of a connected network related
to an average distance functional minimization problem, with associated dissipation term. We
will analyze its geometric and topological properties, and study whether it inherits regularity
properties verified by the static or quasi static case.
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1 Introduction

In a compact, sufficiently regular domain in R2, locally optimal sets for the average distance func-
tional in the static case verify some geometric properties, as the absence of loops or crosses (see [6],
[7], [8] and [9] for instance). Passing to the discrete quasi static evolution with small time steps, the
absence of loops continues to be verified, while the absence of crosses is not true anymore.

Another type of evolution is the so-called dynamic evolution (see [2] for a detailed discussion),
significantly different from the quasi static case. Our goal will be checking if these properties pass to
the dynamic case, and analyzing if the branching conditions (found in [10]) are still valid. Similarly
to [10], the main objects of our analysis will be elements in the following set:

let Ω be a compact connected subset of R2, let us define

Al(Ω) :=
{
X ⊆ Ω : X compact, connected by path, dimHX = 1 andH1(X ) ≤ l

}
, A(Ω) :=

⋃
j≥0

Aj .

(1.1)
Moreover, the following sets will be used frequently:

A∗j (Ω) := Aj(Ω)\A0(Ω), A∗(Ω) := A(Ω)\A0(Ω).
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Like in [10], we will omit dependence on the domain if no confusion arises.
Differently from the quasi static case in [10], now we need at least two functionals: one is the average
distance

F : A −→ (0,∞), F (S) :=
∫

Ω
dist(x, S)dx,

which will be referred as “energy”. Then, as we are studying dynamic evolutions, another functional,
a “dissipation” is required:

Definition 1.1. Given a domain Ω, a dissipation is a functional

D : A×A −→ [0,∞]

which verifies:

• D(S, S) = 0 for any S ∈ A,

• D(S1, S2) > 0 for any S1, S2 ∈ A withH1(S1∆S2) > 0

The dissipation gives a “cost” in passing from one configuration to another, not present in the
quasi static case. This paper will be structured as follows:

• in Section 2 we will analyze geometric regularity of optimal sets in a dynamic evolution,

• in Section 3 we will find conditions about branching behavior of evolving sets.

Notations

Now, before presenting the results, some word about notations. First, “connected” will mean “con-
nected by path”. The most used symbols in this paper will be:

• Ω to denote the domain,

• ε, η, δ, r to denote following small positive numbers,

• l, a to denote generic positive numbers,

• S to denote generic elements of A,

• S0, X0 to denote the initial datum of an Euler scheme,

• w(k, ·), w(k) (k ∈ N) to denote the (k + 1)-th set of an Euler scheme.

If a notation is used in two different Definitions/Propositions/Lemma/Theorems, there is no
connection between them unless otherwise specified.

Some exceptions are present:

• Al,A∗l (with l ≥ 0), andA,A∗: if there is a given domain Ω, they always denote the sets defined
in (1.1),
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• F which always stands for the average distance functional,

• V (·) which stands for the Voronoi cell of the point (or set),

• dist(·, ·) which stands for the geodesic distance between two closed sets.

The notion of Voronoi cell used in this paper is defined as follows:

Definition 1.2. Given a domain Ω, a set S ⊆ Ω, a non empty subset S′ ⊆ S (S′ may consist of one point),
the Voronoi cell of S′ (with respect to S) is

VΩ,S(S′) := {x ∈ Ω : dist(x, S′) = dist(x, S)}.

While a priori the definition of Voronoi cell is dependent on both Ω and S, when there will be
no risk of confusion we will omit both of them, and write V (S′) instead of VΩ,S(S′). Moreover, to
further simplify notations, when considering Voronoi cells of a single point X ∈ S, we will write
V (X) instead of V ({X}).

In the following, when considering evolutions, given a set Z and a point Y ∈ Z we will use fre-
quently the expression “a set J is added in the point Y ”: in this case we mean the following condition
is satisfied:

• there exists a point W ∈ J and a path γ : [0, 1] −→ J ∪ Z such that γ(0) = W , γ(1) = Y ,
γ([0, 1)) ∩ Z = ∅.

Moreover, with this expression we will assume implicitly that the set J has H1-negligible inter-
section with Z.

Finally, we will work only with domains in R2 which are closure of an open, connected, bounded
set, and the word “domain” will always refer to a similar domain. As we have defined F to have
domain in A (in a given domain Ω), when we will write F (X1 ∪ X2) we will assume implicitly that
we are considering only cases satisfying X1 ∪ X2 ∈ A.

2 Loops and crosses

Results concerning geometric properties of optimal sets were presented in [6], [7], [8] and [9]: they
state that in a domain Ω, with measures f verifying f ∈ Lp, p > 4/3, locally optimal sets for the
average distance functional in the static case cannot contain loops or crosses (see Definition 2.1), i.e.
the set

Aoptl := {S ∈ A : S ∈ argminH1(S)≤lF}

cannot contain any element S containing a loop or a cross, for any l > 0 (the case l = 0 is trivial).
Before continuing, we define what we mean here with “loop” and “cross”:

Definition 2.1. Given domain Ω ⊆ R2, endowed with the Euclidean topology, a set W ⊆ Ω is:

• a “loop” if W is homeomorphic to S1,
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• a cross if there exists distinct points w∗, w1, · · · , w4 ∈ W such that there exists paths γ1, · · · , γ4 :
[0, 1] −→W with γi(0) = w∗, γi(1) = wi for any i = 1, · · · , 4 and γj((0, 1])∩ γk((0, 1]) = ∅ for any
j 6= k.

The absence of loops is inherited by the quasi static evolution when the starting configuration
does not contain loops (the other case, when initial configuration already contain a loop, is trivial
as due to monotonicity every set in the evolution contains the initial configuration, thus contains a
loop), as proven in [11]; on the other side, the same paper shows a counterexample to the absence of
crosses, by presenting an example of evolution starting from initial configuration without crosses,
but later sets contain crosses.

As we will see in the following, the dynamic evolution is more complicated: if in the quasi static
case we could easily determine how much length is added at each step, here this task is much more
complicated due to the lack of an explicit constraint on lengths, and the presence of the dissipation
term, which may generate qualitatively different behaviors (see [12] for instance).

We first present some estimates for the energy functional.

2.1 Energy estimates

Let us start with some estimates about the energy functional. Most of them can be found on [6], [7],
[8] and [9].

Lemma 2.2. Given a domain Ω, let be S1, S2 ∈ A, S1 ⊂ S2, then

F (S1)− F (S2) ≤ O(max
y∈S2

dist(y, S1)).

Proof. The proof can be found on [9], we limit to report the main idea here. Writing the thesis
explicitly we have

F (S1)− F (S2) =
∫

Ω
dist(x, S1)− dist(x, S2)dx

and as S1 ⊂ S2 ∫
{x∈Ω:dist(x,S1)=dist(x,S2)}

dist(x, S1)− dist(x, S2)dx = 0.

So the thesis is equivalent to estimate∫
{x∈Ω:dist(x,S1)>dist(x,S2)}

dist(x, S1)− dist(x, S2)dx.

As for an point z ∈ Ω we have

dist(z, S1) ≤ dist(z, S2) + max
y∈S2

dist(y, S1)

so integrating we have ∫
Ω

dist(z, S1) ≤
∫

Ω
dist(z, S2) + |Ω|max

y∈S2

dist(y, S1)
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or equivalently
F (S1)− F (F2) ≤ |Ω|max

y∈S2

dist(y, S1),

and the proof is complete.

Now we want a lower bound: we introduce a the notation of smooth point as we have done in
[10]:

Definition 2.3. Given a domain Ω, S ∈ A a generic element, a non endpoint P ∈ S is “smooth” if there
exists r > 0 such that:

(1) there exists an homeomorphism f : B(P, r) ∩ S −→ (0, 1);

(2) there exists an unique direction with sign θ (which can be identified with an unit vector in S1) such that

for any sequence {Pn}∞n=0 → P , in B(P, r), Pn 6= P for any n, the directions of vectors
−−→
PnP

dist(Pn, P )
converge to θ.

Again, as in [10], we say a subset of S is smooth is all its non endpoints are smooth.
Next we report a lower bound estimate on the gain for the energy functional (the proof can be

found on [10]):

Proposition 2.4. Given a domain Ω, let be S ⊂ Ω be a connected set, if we add a segment λε to a smooth non
endpoint of S (withH1(λε) = ε), then the “gain” F (S)−F (Sε) is comparable with ε3/2, where Sε := S∪λε.

Fig. 1: All the shaded area, whose area is comparable with ε1/2, gains something in path; the gain is
concentrated in the rectangle with those three dashed sides, whose area is comparable with ε1/2 too.

Here we limit to give a brief sketch: the shaded parabola (whose area is comparable with ε1/2)
yields a gain in energy at least comparable with ε3/2; the gain is concentrated in the dashed rectan-
gle, whose area is comparable with ε1/2, and as the gain in path is not greater than ε, the gain in
energy is at most comparable with ε1/2.

The next result is an important one, and provides a sharper lower bound estimate when some
geometric properties are verified:

Proposition 2.5. Given a domain Ω, let S ∈ A, and let it have a point O satisfying:
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(∗) there exists ξ > 0 and β < π such that S ∩ B(O, ξ) is contained in the circular sector with center O
and arc Q′R′, with Q̂′OR′ = β.

Then we have:

(1) there exist ρ > 0 and θ > 0 and a isosceles triangle T ′ ⊂ V (O) with a vertex in O, two sides with
length ρ and angle in O measuring θ, that does not intersect S,

(2) there exists ε0 such for any ε < ε0 adding a segment λε at O, withH1(λε) = ε in O leads to a gain for
the energy functional comparable with O(ε).

For the proof we refer to [10].
The following argument has been made in [11], but we report it as it is relevant for the next

sections. Results of Propositions 2.4 and 2.5 can be summarized as follows: for a configuration X
if condition (∗) of Proposition 2.5 is verified by some point P (for some r > 0, θ < π), then locally
near the point the configuration can be figured as

Fig. 2: This is the schematic representation of the configuration near P , with X ∩B(P, r) contained in the
shaded circular sector, while the shaded triangle is contained in V (P ).

and the gain in energy by adding in a correct manner a segment Seg in P is comparable with
O(H1(Seg)) forH1(Seg) sufficiently small.

If condition (∗) is not satisfied by the point Q, then the configuration near Q can be figured as
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Fig. 3: This is the schematic representation of the configuration near Q, with points of X converging from
many directions (denoted by lighter lines).

and the gain in energy by adding a set U in Q is at most comparable with O(H1(U)3/2) for H1(U)
sufficiently small, as it is upper bounded by the gain in the following configuration (like that in
Proposition 2.4)

Fig. 4: In this configuration, withH1(Y1Y2) = H1(Y3Y4) = H1(Y2Y3)/2 = H1(U), the gain in energy can be
comparable with O(H1(U)3/2) at most. The light shaded region, and that delimited by dashed lines, have a

positive gain in path.

which has gain in energy comparable with O(H1(U)3/2) at most: indeed independently from the
exact choice of U , when added in Q (above axis x, if contains parts added below the same argument
applies with slight modifications), it must be included in the rectangle Y1Y2Y3Y4 of Figure 4. Then

F (X ∪ U) ≥ F (X ∪ Y1Y2 ∪ Y2Y3 ∪ Y3Y4);

for a generic point (x, y), if it satisfies dist((x, y), Y1Y2 ∪ Y2Y3 ∪ Y3Y4) ≤ dist((x, y), X) = y, then

dist((x, y), Y1Y2) ≤ dist((x, y), X) = y
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or
dist((x, y), Y2Y3) ≤ dist((x, y), X) = y

or
dist((x, y), Y3Y4) ≤ dist((x, y), X) = y

and in all these cases a direct computation show (x, y) must belong to a set of area comparable with
O(H1(U)1/2).

2.2 Evolution schemes

Now we are ready to introduce our class of evolutions. We recall some aspects in the abstract case
first.

Let be given

• a topological set (X, τ),

• a functional
F : [0, T ]×X ×X −→ R ∪ {±∞},

• an initial datum X0 ∈ X .

Then the evolution has form{
w(0) = X0

w(n+ 1) ∈ argmin F((n+ 1)ε, ·, w(n))
.

an associated function is Σε : [0, T ] −→ X obtained by setting

Σε(t) = w

([
t

v(ε)

])
, (2.1)

with [·] denoting the integer part mapping, and v a suitable function verifying limε→0+ v(ε) = 0.
In this paper we are considering the exponent related dynamic evolution. Let us introduce them:

given a domain Ω, parameters α > 1, ε > 0 (a similar ε will be sometimes referred as “time step”),
we define ,

Dα,ε : A×A −→ [0,∞], Dα,ε(X1,X2) :=

 H1(X1\X2)α

ε
if X2 ⊆ X1

∞ otherwise
.

The functionals we are going to consider in this paper have all the form

Fα,ε : A×A −→ [0,∞], Fα,ε(X1,X2) := F (X1) +Dα,ε(X1,X2).

Thus, given parameters α > 1, a time step ε > 0, a time T > 0, and an initial datum S0 ∈ A, our
Euler scheme is
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{
w(0) = S0

w(n+ 1) ∈ argmin(X∈AH1(w(n))+1
Fα,ε(X , w(n))

. (2.2)

The main difference between this and the quasi static case is that we have not prescribed how
much length is added at each step, and the presence of a dissipation term which partly offsets the
gain in energy: but as we are considering small step evolutions, we impose that for any evolution
like (2.2), there exists c0 > 0 (not depending neither on ε nor on n) such that at each step

H1(w(k + 1)\w(k)) = εc

for some c ≥ c0 > 0. In this way we are prohibiting adding too much length, although the exact
choice of c is very difficult to determine due to contribution of the dissipation term.

Here we put

Σε(t) := w

([
t

ε
1

α−1

])
the associated function, with [·] denoting the integer part mapping. The motivations for exponent

1
α−1 will be explained later, in the proof of Proposition 3.3, and mainly due to the absence of control
onH1(w(k + 1)\w(k)).

Notice that given a random step k, while a priori the new set added w(k)\w(k − 1) can be not
connected, we can always write w(k)\w(k − 1) =

⋃
i∈ICi, where Ci are connected components

of w(k)\w(k − 1) and I a suitable set of indexes. In this way we can split the passage of adding
w(k)\w(k − 1) in many passages, in which we add one Ci at each time: it is obvious that each of
these connected components is connected to w(k − 1) by a path, and as we have a limitation on
H1(w(k)\w(k−1)) ≤ 1, we have that there are at most countable many connected components Ci of
positive length (connected components with length 0 can be easily neglected as they do not modify
the energy). So this method can allow us to restrict our discussion to situations when the new set
added is connected.

The dynamic case is inherently different from the quasi static one due to results in [12], where
is shown that for discrete dynamic evolution with sufficiently small time step there exists “locally
stable” points, i.e. configurations from which no further evolution is allowed. Here we limit to give
a brief sketch, for more details we refer to [12].

Fix parameters α > 1, ε > 0, S ∈ A, if we add a set Jε′ with length ε′ to S:

Fα,ε(S, S)−Fα,ε(S ∪ Jε′ , S) = F (S)− F (S ∪ Jε)−
H1(Jε′)α

ε

if Proposition 2.5 is applicable, then the gain for F is has order O(ε′), thus

Fα,ε(S, S)−Fα,ε(S ∪ Jε′ , S) = O(ε′)− O(ε′α)
ε

If condition (∗) of Proposition 2.5 is not satisfied, then the gain has order O(ε′3/2), thus

Fα,ε(S, S)−Fα,ε(S ∪ Jε′ , S) = O(ε′3/2)− O(ε′α)
ε

.
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We have imposed ε′ := εc, for some c ≥ c0 > 0, thus the order equations read

Fα,ε(S, S)−Fα,ε(S ∪ Jε′ , S) = O(εc)−O(ε′cα−1)

and
Fα,ε(S, S)−Fα,ε(S ∪ Jε′ , S) = O(ε

3
2
c)−O(ε′cα−1)

respectively.
In the first case c < cα− 1 has always solutions for α > 1, thus the gain in energy can offset the

loss due to the dissipation term; in the second case,
3
2
c < cα − 1 is required, and this has solutions

only for α > 3/2, and there is no guarantee that the evolution continues if α ≤ 3/2, as discussed in
[12].

2.3 Loops

In [11] we have proven that for the quasi static case, starting from an initial datum not containing
loops, every set in the evolution process will not contain loops. Here we prove the analogue result
for the dynamic case; the proof is very similar.

Proposition 2.6. Given a domain Ω, parameters α > 1, ε > 0, S0 ∈ A an initial datum not containing
loops, consider the evolution{

w(0) = S0

w(n+ 1) ∈ argminX∈AH1(w(n))+1
F (X ) +Dα,ε(X , w(n))

.

Then for any n the set w(n) does not contain loops.

Proof. The proof is done by induction on n. By hypothesis we have that w(0) := S0 does not contain
loops.

Suppose that w(n) does not contain loops, and our goal is to prove w(n + 1) does not contain
loops. This is done by absurdum. Let be I := w(n+ 1)\w(n), the closure of the “new” set added at
step n+ 1. Suppose I 6= ∅, otherwise is trivial.

If w(n+ 1) contains a loop E, this mean that either E ⊆ I or both (E ∩ I) and (E ∩w(n)) are non
empty, as the third possibility E ⊆ w(n) is excluded by inductive hypothesis. These two cases will
be dealt separately.

Case E ⊆ I .
In this case we can apply the same argument found in the proof of absence of loops in the static
case (see [6], [7], [8] and [9] for instance): by removing a suitable small set Jδ ⊂ E, withH1(Jδ) = δ,
the loss for the energy functional is comparable with O(δ2), while adding it elsewhere the gain is at
least comparable with O(δ3/2) and the presence of the loop is not optimal.

Case (E ∩ I), (E ∩ w(n)) both non empty.
Let us parameterizeE: let be e : [0, 1] −→ E, where e(0) = e(1) = X (withX ∈ E∩w(n) an arbitrary
point, the exact choice is not influent for the proof), and e|(0,1) : (0, 1) −→ E\{X} homeomorphism.
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As both (E ∩ I), (E ∩ w(n)) are non empty, V := e−1(E ∩ I) is non empty.
We show that V has non empty interior. This is done by absurdum: if (0, 1)\V is dense in (0, 1),

e((0, 1)\V ) = (E ∩ w(n))\{X} must be dense in E\{X}. Combining this with E\{X} dense in E,
leads to E ∩ w(n) dense in E. As both E and w(n) are closed, E ∩ w(n) = E, which contradicts
E ∩ I 6= ∅. Thus V has non empty interior part, i.e. there exists (ρ−, ρ+) ⊆ V with ρ− < ρ+. Now we
can remove a sufficiently small piece Jδ ⊆ e((ρ−, ρ+)), and apply the same argument found before.
Again the presence of a loop is not optimal, and the proof is complete.

This proof is almost identical to the quasi static counterpart in [11]: indeed the main idea is to
“remove” some portion and add it elsewhere, obtaining a gain in energy exceeding the loss from
the removal. The dissipation plays almost no role here, as this process does not alter the length of
the “new” set added (thus the dissipation term), while carrying a gain for the energy. Similarly, the
exact value ofH1(I) is not influent too.

2.4 Crosses

In [11] we have proven that in the quasi static case, even starting from an initial configuration with-
out crosses, later sets in the evolution may exhibit crosses. The same result holds for the dynamic
case, and again, independently from parameter α and the same example works again.

The following result holds:

Proposition 2.7. Given a domain Ω, for any parameter α > 1, there exists sets S0 ∈ A without crosses such
that for any ε > 0 sufficiently small, any set w(n) with n ≥ 1 contains crosses, where w(n) aredefined by{

w(0) := S0

w(n+ 1) ∈ argminX∈AH1(w(n))+1
F (X ) +Dα,ε(X , w(n))

.

Proof. The same example provided for the quasi static case in [11] also works here. We use the
coordinate system in Figure 5.

Fig. 5: This is an example of initial configuration without crosses which evolves in sets exhibiting crosses
later.
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Our domain will be Ω := [−5, 5]× [−5, 5]; X0 is union of sets:

• segments connecting (0, 0) to P1, P2, P3 respectively, i.e.

{(x, y) ∈ Ω : x = 0, y ∈ [0, 1]},

{(x, y) ∈ Ω : y = 0, x ∈ [0, 1]},
{(x, y) ∈ Ω : x = y, y ∈ [0, 1/4]},

• circle {(x, y) ∈ Ω : (x− 1/2)2 + (y − 1/2)2 = 1/16},

• arc {(x, y) ∈ Ω : (x− 1)2 + (y − 1)2 = 1, x ≥ 1 or y ≥ 1}.

Every point apart from (0, 0) does not verify condition (∗) of Proposition 2.5.
Let be X0 the initial configuration of the Euler scheme{

w(0) := X0

w(n+ 1) ∈ argminX∈AH1(w(n))+1
F (X ) +Dα,ε(X , w(n))

.

Notice that while there are no crosses inX0, there are already points x1, x2, x3 and paths g1, g2, g3 :
[0, 1] −→ X0 such that

• g1(0) = g2(0) = g3(0) = (0, 0),

• gi(1) = xi for any i = 1, · · · , 3,

• gj((0, 1]) ∩ gk((0, 1]) = ∅ for any j 6= k.

Thus, if during the evolution there exists a set w(n) containing a point x4 and a path g4 : [0, 1] −→
w(n) with g4(0) = (0, 0), g4(1) = x4 and g4((0, 1]) ∩ gk((0, 1]) = ∅ for any k = 1, · · · , 3, then w(n)
contains a cross.

As point (0, 0) satisfies condition (∗) of Proposition 2.5, adding a segment Iεc (with length εc,
c will be a free parameter for now) here in a suitable way (as in the proof of Proposition 2.5), the
gain for the energy functional is comparable O(εc) while the loss due to the dissipation term is
εcα

ε
= εcα−1. Now as α > 1, the inequality

c < cα− 1

has solutions
c >

1
α− 1

;

these solutions are acceptable, so we can assure that for any α > 1, ε > 0, there exists I∗ε ∈ A∗ε such
that

F (X0 ∪ I∗) +
H1(I∗ε )
ε

< F (X0)

thus w(1) 6= X0. Moreover, from this argument we see that the new set is added in (0, 0), the only
to satisfy condition (∗) of Proposition 2.5 (thus the only to yield a gain in energy comparable with
O(H1(I∗ε ))) i.e. the closure of w(1)\X0 contains X0, thus there exists a fourth point x4 ∈ w(1)\X0

connected to (0, 0) by a path g4 not intersecting X0, leading to a cross appearing in w(1).
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3 Topology

In [10] we have presented some sufficient results to force a branching behavior in the quasi static
case; here we try to extend them to the dynamic case. Results in [12] concerning the presence of
locally stable points (i.e. configurations from which no further evolution happens) can potentially
compromise this extension.

We first define branching, in the general case:

Definition 3.1. Given a domain Ω ⊆ R2, endowed with the Euclidean topology, a functional G, an initial
datum X0 ∈ A, consider a general irreversible evolution

w(0) := X0

w(n+ 1) ∈ argminPG
w(n) ⊆ w(n+ 1)

with P denoting some constraint. Then we will say that this evolution exhibits a “branching” at step k if
there exists

• two points R ∈ w(k)\w(k − 1), R′ ∈ w(k − 1) and a path γ : [0, 1] −→ w(k) with γ(0) = R,
γ(1) = R′, γ([0, 1]) ∩ ext(w(k − 1)) = ∅,

or

• three points R1, R2 ∈ w(k)\w(k − 1), R′ ∈ ext(w(k − 1)) and paths γ1, γ2 : [0, 1] −→ w(k) with
γi(0) = Ri (i = 1, 2), γ1(1) = γ2(1) = R′, γi([0, 1))∩w(k−1) = ∅ (i = 1, 2), γ1([0, 1)) * γ2([0, 1))
and γ2([0, 1)) * γ1([0, 1)) .

Thus, a branching behavior can be roughly imagined as a point increasing its multiplicity by at
least 1 for non endpoints, and by at least 2 for endpoints (although this argument suits well only for
points with finite multiplicity).

In [10] we have proven that for quasi static case, under special configurations, if the Euler scheme
keeps evolving “far” from a particular point, then a branching behavior is exhibited after a critical
time. In other words, the following result (for more details we refer to [10]) holds for the quasi static
case:

Proposition 3.2. Given a domain Ω, let S(1)
0 ∈ A be a generic element, T a positive time and ε > 0 a (small)

positive time step, let us consider the Euler scheme{
w(0) := S

(1)
0

w(k) ∈ argminH1(X ′)≤H1(S
(1)
0 )+kε, w(k−1)⊆X ′F (X ′)

in the time interval [0, T ], and the associated function

Σε : [0, T ] −→ A, Σε(t) := w

[(
t

ε

)]
.
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Suppose that there exist a non endpoint P0 ∈ S(1)
0 verifying condition (∗) of Proposition 2.5, and η > 0

such that B(P0, η) ∩ (w(k)\w(0)) = ∅ for any k. Then there is an upper bound T εmax such that T > T εmax

forces a branching behavior.

For the quasi static case it turns that this upper bound, while dependent on the time step ε, is

T εmax := ε +
F (S(1)

0 )
K

with K depending only on η and geometric quantities near P0, thus Tmax :=

1 +
F (S(1)

0 )
K

is a valid upper bound for sufficiently small ε > 0.
In this section we aim to adapt the proof to the dynamic case, as the presence of the dissipation

term and the absence of accurate estimates on the length added at each step may cause problems.

Proposition 3.3. Given a domain Ω, parameters α > 1, ε > 0, let S0 ∈ A be a generic element, T a positive
time and consider the Euler scheme{

w(0) := S0

w(k) ∈ argminX ′∈AH1(w(k−1))+1
F (X ′) +Dα,ε(X ′, w(k − 1))

in the time interval [0, T ], and the associated function

Σε : [0, T ] −→ A, Σε(t) := w
[(
t/ε

1
α−1

)]
.

Suppose that there exist a non endpoint P0 ∈ S0 verifying condition (∗) of Proposition 2.5, and η > 0
such that B(P0, η) ∩ (w(k)\w(0)) = ∅ for any k. Then there is an upper bound Tα,εmax such that T > Tα,εmax

forces a branching behavior.

Notice immediately the difference in time scaling: the choice of the exponent
1

α− 1
will be

explained in the proof, and is direct result of loss of control on the length added at each step.

Proof. The proof is partly similar to those found in [10] and [11], as they use similar estimates for
the energy functional; some caution must be used when treating the dissipation term.

Recalling Proposition 2.5, we see that existence of such P0 means that the gain in energy, by
adding a suitable set I ∈ A∗1 in P0 in a suitable manner, is comparable with O(H1(I)), with a lower
bound constant depending only on geometric quantities (for more details see the proof of Proposi-

tion 2.5, found in [10]). With this method, the dissipation term is
H1(I)α

ε
, and asH1(I) = εc for some

suitable c, we can always have εc > εcα−1, thus the gain in energy is not offset by the dissipation
term.

That is, considering{
w(0) := S0

w(k) ∈ argminX ′∈AH1(w(k−1))+1
F (X ′) +Dα,ε(X ′, w(k − 1))

,

for the first step we have
F (S0)− F (w(1)) ≥ K∗εcopt ,
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whereK∗ is a constant dependent only on geometric quantities, and copt is such thatH1(w(1)\S0) =
εcopt .

Adding sets in P0, which is a non endpoint, will cause a branching behavior.
We analyze what happens at subsequent steps. By hypothesis we have there exists η > 0 such

that B(P0, η) ∩ (w(j)\w(0)) = ∅ for any j, and P0 verifies

• there exists ρ > 0 and θ < π such that B(P0, ρ) ∩ S0 is entirely contained in the circular sector
(of B(P0, ρ)) with central angle measuring θ.

As these facts combines imply w(j)∩B(P0, η) = S0∩B(P0, η), for any step the gain in energy by
adding correctly a segment J∗ ∈ A∗1 in P0 will generate a gain in energy at least K∗H1(J∗), with K∗

a uniform constant valid independently from the step. This exists because P0 has a positive measure
V (P0) (|V (P0)| is bounded from below by a constant not dependent from the step, as it contains at
least a triangle Trg ⊆ V (P0) ∩ B(P0, η/3)), and w(j) ∩ B(P0, η) = S0 ∩ B(P0, η) for any j: in S0 an
arbitrary point y ∈ Trg will satisfy dist(y, P0) ≤ η/3 (as Trg ⊆ B(P0, η/3)), in w(j) the same point y
will satisfy dist(y, S0) = dist(y, w(j)) as the opposite, i.e. dist(y, w(j)) < dist(y, S0) ≤ dist(y, P0) ≤
η/3, forces the existence of a point z ∈ w(j)\S0 such that dist(y, z) = dist(y, w(j)), which ultimately
leads to z ∈ (w(j)\S0) ∩B(P0, η) and contradicts w(j) ∩B(P0, η) = S0 ∩B(P0, η).

Some estimate on copt is required in order to estimate the branching time. We have proven
that adding a correct segment J∗ ∈ A∗1 in P0 (which causes a branching) generates a gain for the
energy at least K∗H1(J∗), and this gain is obviously not greater than |Ω|H1(J∗) (from Lemma 2.2;

the dissipation term is
H1(J∗)α

ε
.

Putting H1(J∗) := εc, the gain for the energy is dεc where d (may depend on several variables,
included ε and which particular step we are considering) is a value in [K∗, |Ω|], and the dissipation
is εcα−1. Maximizing the expression

dεc − εcα−1

the optimal choice is

c =
log ε+ log(d/α)

(α− 1) log ε
.

Thus the optimal exponent copt is found in the interval log ε+ log
K∗

α
(α− 1) log ε

,
log ε+ log

|Ω|
α

(α− 1) log ε

 ,
and little information is available for the exact value for the optimal exponent copt apart from the
obvious

lim
ε→0+

copt =
1

α− 1
.

As we are considering small step discrete evolutions, we set the associated function as

Σε : [0, T ] −→ A, Σε(t) := w
([
t/ε

1
α−1

])
.
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Now return to the branching time, and consider the first step. As it is possible to add J∗ ∈ A∗1
in P0 and obtain a gain for the energy at least K∗H1(J∗), then w(1) 6= S0 and some set J ′ ∈ A∗1 is
added. Recall that it is possible to add a segment Seg′ withH1(Seg′) = H1(J ′) in P0 (and causing a
branching behavior) and having

F (S0 ∪ Seg′) +
H1(Seg′)α

ε
< F (S0).

If no branching appears, i.e. J ′ is added elsewhere, it is forced that adding Seg′ in P0 is either not
optimal or not the only optimal choice, thus

F (S0 ∪ J ′) +
H1(J ′)α

ε
≤ F (S0 ∪ Seg′) +

H1(Seg′)α

ε
< F (S0),

and consideringH1(Seg′) = H1(J ′),

F (S0)− F (S0 ∪ J ′) ≥ F (S0)− F (S0 ∪ Seg′) ≥ K∗H1(J ′).

As J ′ = εc for some suitable c, and considering the estimates above on the optimal exponent,

F (S0)− F (S0 ∪ J ′) ≥ K∗H1(J ′) ≥ K∗ε
log ε+log K

∗
α

(α−1) log ε .

This argument can be generalized to every step, thus at step h, if no branching behavior has
occurred, this implies

F (w(l))− F (w(l + 1)) ≥ K∗ε
log ε+log K

∗
α

(α−1) log ε

for any l = 0, · · · , h− 1, thus

F (S0)− F (w(h)) ≥ hK∗ε
log ε+log K

∗
α

(α−1) log ε ,

and considering that F takes value in (0,∞),

F (S0) ≥ hK∗ε
log ε+log K

∗
α

(α−1) log ε

is required, thus

h ≤ F (S0)

K∗ε
log ε+log K

∗
α

(α−1) log ε

.

For the associated function, as Σε(t) := w
([
t/ε

1
α−1

])
, the above estimate leads to[

t

ε
1

α−1

]
≤ F (S0)

K∗ε
log ε+log K

∗
α

(α−1) log ε

,

and considering
t

ε
1

α−1

− 1 ≤
[

t

ε
1

α−1

]
≤ t

ε
1

α−1

,
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t

ε
1

α−1

≤ 1 +
F (S0)

K∗ε
log ε+log K

∗
α

(α−1) log ε

,

and ultimately

t ≤ ε
1

α−1 (1 +
F (S0)

K∗ε
log ε+log K

∗
α

(α−1) log ε

) = ε
1

α−1 +
F (S0)
K∗

ε
logα−logK∗
(α−1) log ε .

This finally gives an upper bound estimate for the branching time

Tα,εmax = ε
1

α−1 +
F (S0)
K∗

ε
logα−logK∗
(α−1) log ε ,

and the proof is complete.

Now analyze Tα,εmax: for a given α > 1, as

lim
ε→0+

Tα,εmax = lim
ε→0

ε
1

α−1 +
F (S0)
K∗

ε
logα−logK∗
(α−1) log ε =

F (S0)
K∗

,

the estimate

Tmax :=
F (S0)
K∗

+ 1

is valid for any ε sufficiently small. Notice that parameter α does not play a very relevant role:

indeed its main role is in the exponent
1

α− 1
in the time scaling.
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